

Dwarkadas J. Sanghvi College of Engineering

(Autonomous College Affiliated to the University of Mumbai)

Scheme and detailed Syllabus (DJS22)

of

Honors Degree Program

in

Robotics

Revision: 2 (2024)

With effect from the Academic Year: 2024-2025

Scheme for Honors Robotics (Academic Year 2024-2025)

Sr. No.	Course Code	Course	Teaching Scheme (hrs.)				Continuous Assessment (A) (Marks)			Semester End Assessment (B) (marks)						Total
			Th	Р	Т	Credits	Th	T/W	Total CA (A)	Th/ Cb	0	Р	P&O	Total SEA (B)		Credits
Semester V																
1	DJS22MEHN2C1	Introduction to Robotics	4			4	35		35	65				65	100	4
Semester VI																
1	DJS22MEHN2C2	Modelling and Design of Robotics	4			4	35		35	65				65	100	4
3	DSJ22MEHN2L1	Robotics Laboratory 1		2		1		25	25				25	25	50	1
Semester VII																
4	DJS22MEHN2C3	Advance Robotics	4			4	25		25	75				75	100	4
5	DJS22MEHN2L2	Robotics Laboratory 2		2		1		25	25				25	25	50	1
Semester VIII																
6	DJS22MEHN2C4	AI and ML for Robotics	4			4	35		35	65				65	100	4
		Total	16	4		18	140	50	190	260			50	310	500	18

Program: Mechanical Engineering

T.Y B. Tech

Course: Introduction to Robotics (DJS22MEHN2C1)

Pre-requisite:

- 1. Knowledge of basic elements of mechanical engineering
- 2. Knowledge of electrical engineering like motors & drives
- 3. Knowledge of instrumentation related topics like sensors & applications
- 4. Basic knowledge of control systems engineering

Objectives:

- 1. Gain a comprehensive understanding of automation principles and its various types, along with the historical evolution of robotics.
- 2. Familiarize oneself with the anatomy of robots, including drive systems, actuators, power transmission systems, and activation components.
- 3. Learn about the different types of sensors used in robotics and their applications, including touch sensors, proximity sensors, force sensors, and encoders.
- 4. Understand the materials used in robot design, transmission devices, end effectors, and their classifications.
- 5. Gain knowledge about robot controllers, their types, the significance of programming in robotics, and the various programming languages and techniques used in industrial robot programming.
- 6. Explore the wide range of applications of robots in industries, while also considering social, environmental, and economic implications.

Outcomes: On completion of the course, the learner will be able to:

- 1. Students will develop a thorough understanding of the fundamentals of robotics, including automation principles, historical evolution, and the definition of robots.
- 2. Students will be able to identify and describe the components of robot anatomy, including drive systems, actuators, and power transmission systems.
- 3. Students will be proficient in understanding sensor technology and its applications in robotics, including touch sensors, proximity sensors, and encoders.
- 4. Students will gain knowledge about mechanical systems in robotics, including materials used in design, transmission devices, and end effectors.
- 5. Students will develop programming skills necessary for robot control, simulation, and industrial applications, using various programming languages and techniques.
- 6. Students will be able to identify and discuss the wide range of applications of robotics in different industries and understand the associated advantages, disadvantages, and ethical considerations.

Introduction to Robotics – DJS22MEHN2C1

NAAC Accredited with "A" Grade (CGPA : 3.18)

Unit		Duration
1	Introduction to Robotics : to automation & its types, History & evolution of robotics, Definition of robots, Robotic manipulators, Types of robots, Generations of robots, Laws of robotics, Classification of robots & its applications, Specifications of robots.	9
2	Robot Anatomy : Anatomy of robots, Drive systems, Actuators and Power Transmission systems, Types of drives & its applications, Hydraulic drives, Pneumatic drives, Electric drives, Hybrid drives, Robot activation & feedback components.	9
3	Sensors in robotics : Touch Sensors, Tactile Sensors, Proximity & Range Sensors, Sensor Based Systems, Force Sensors, Light sensors, Pressure sensors, Ultrasonic sensors, Infra-red sensors, Pots, Encoders, Position & Velocity Sensors.	9
4	Articulated Mechanical System: Materials used for robot design & its properties, Transmission devices in robots & its types, End effectors, Types of end effectors, Tools & Grippers, Classification of tools & grippers, Types of tool & gripper actuations.	9
5	Robot Controllers & Programming : Robot brain, Controller & its types, Need for controller in robots, Robot simulation, Robot software, Robot Programming & the Languages, Types of robot programming, Industrial robot programming.	8
6	Robot Applications : Industrial applications of robots, Medical, Household, Entertainment, Space, Underwater, Defense, Social, Environmental & economic issues in robot applications, Advantages & Disadvantages of Robotization.	8
	Total	52

Books Recommended:

Text books:

- 1. Dr. T. C. Manjunath, "Fundamentals of Robotics", Nandu Publishers, 5th Edn., India, 2005.
- 2. Elaine Rich & Kevin Knight, "Artificial Intelligence", Mac Graw Hill, Singapore, 3rd Edn., 2017.
- 3. Dr. T. C. Manjunath, "Fast Track to Robotics", Nandu Publishers, 2nd Edn., Mumbai, Maharashtra, India, 2005.
- 4. K.S. Fu, R.C. Gonzalez, C.S.G. Lee, "Robotics: Control Sensing Vision & Intelligence", Mac Graw Hill, USA, 5th Edition, 2010.
- 5. Robin R. Murphy, "Introduction to AI and Robotics", MIT Press, Second Edition, 648 pp., Oct. 2019.

Reference Books:

1. Industrial Robotics, Technology, Programming & Applications, Grover, Weiss, Nagel, Ordey,Mc Graw Hill.

- 2. Robotic technology & Flexible Automation, S R Deb. TMH.
- 3. Robotics for Engineers, Yoram Koren, Mc Graw hill.
- 4. Fundamentals of Robotics, Larry Health.
- 5. Robot Analysis & Control, H Asada, JJE Slotine.
- 6. Robot Technology, Ed. A Pugh, Peter Peregrinus Ltd. IEE, UK. 8. Handbook of Industrial Robotics, Ed. Shimon. John Wiley
- 7. Roland Siegwart, Illah Reza Nourbakhsh, and Davide Scaramuzza, "Introduction to Autonomous Mobile Robots", Bradford Company Scituate, US
- 8. Fundamentals of Robotics Analysis & Controls, Robert Schilling, Prentice Hall Inc, India.
- 9. Robotics Amitaabh Bhattacharya
- 10. P.A. Janaki Raman, "Robotics and Image Processing an Introduction", Tata McGraw Hill Publishing company Ltd., 1995.

Checked by

Principal